Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 767
Filter
1.
Med Phys ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588491

ABSTRACT

BACKGROUND: The detectability performance of a CT scanner is difficult to precisely quantify when nonlinearities are present in reconstruction. An efficient detectability assessment method that is sensitive to small effects of dose and scanner settings is desirable. We previously proposed a method using a search challenge instrument: a phantom is embedded with hundreds of lesions at random locations, and a model observer is used to detect lesions. Preliminary tests in simulation and a prototype showed promising results. PURPOSE: In this work, we fabricated a full-size search challenge phantom with design updates, including changes to lesion size, contrast, and number, and studied our implementation by comparing the lesion detectability from a nonprewhitening (NPW) model observer between different reconstructions at different exposure levels, and by estimating the instrument sensitivity to detect changes in dose. METHODS: Designed to fit into QRM anthropomorphic phantoms, our search challenge phantom is a cylindrical insert 10 cm wide and 4 cm thick, embedded with 12 000 lesions (nominal width of 0.6 mm, height of 0.8 mm, and contrast of -350 HU), and was fabricated using PixelPrint, a 3D printing technique. The insert was scanned alone at a high dose to assess printing accuracy. To evaluate lesion detectability, the insert was placed in a QRM thorax phantom and scanned from 50 to 625 mAs with increments of 25 mAs, once per exposure level, and the average of all exposure levels was used as high-dose reference. Scans were reconstructed with three different settings: filtered-backprojection (FBP) with Br40 and Br59, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) with strength level 5 and Br59 kernel. An NPW model observer was used to search for lesions, and detection performance of different settings were compared using area under the exponential transform of free response ROC curve (AUC). Using propagation of uncertainty, the sensitivity to changes in dose was estimated by the percent change in exposure due to one standard deviation of AUC, measured from 5 repeat scans at 100, 200, 300, and 400 mAs. RESULTS: The printed insert lesions had an average position error of 0.20 mm compared to printing reference. As the exposure level increases from 50 mAs to 625 mAs, the lesion detectability AUCs increase from 0.38 to 0.92, 0.42 to 0.98, and 0.41 to 0.97 for FBP Br40, FBP Br59, and SAFIRE Br59, respectively, with a lower rate of increase at higher exposure level. FBP Br59 performed best with AUC 0.01 higher than SAFIRE Br59 on average and 0.07 higher than FBP Br40 (all P < 0.001). The standard deviation of AUC was less than 0.006, and the sensitivity to detect changes in mAs was within 2% for FBP Br59. CONCLUSIONS: Our 3D-printed search challenge phantom with 12 000 submillimeter lesions, together with an NPW model observer, provide an efficient CT detectability assessment method that is sensitive to subtle effects in reconstruction and is sensitive to small changes in dose.

2.
Phys Med Biol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604190

ABSTRACT

Objective Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels. Method The lung phantom used in this study is based on a patient chest CT scan containing ground glass opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two different size extension rings to mimic a small- and medium-sized patient and was scanned on a conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, contrast to noise ratio (CNR), root mean squared error (RMSE), structural similarity index (SSIM), and multi-scale SSIM (MS SSIM) were calculated for each image. Results DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was estimated to reduce dose by 25-83% in the small phantom and by 50-83% in the medium phantom without decreasing image quality for any of the metrics measured in this study. These dose reduction estimates are more conservative compared to the estimates obtained when only considering noise and CNR. Conclusion DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose, which can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom used in this study offers an improved testing environment with more realistic tissue structures compared to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and contrast-based assessments.

3.
Quant Imaging Med Surg ; 14(4): 2870-2883, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617144

ABSTRACT

Background: Despite advancements in coronary computed tomography angiography (CTA), challenges in positive predictive value and specificity remain due to limited spatial resolution. The purpose of this experimental study was to investigate the effect of 2nd generation deep learning-based reconstruction (DLR) on the quantitative and qualitative image quality in coronary CTA. Methods: A vessel model with stepwise non-calcified plaque was scanned using 320-detector CT. Image reconstruction was performed using four techniques: hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), DLR, and 2nd generation DLR. The luminal peak CT number, contrast-to-noise ratio (CNR), and edge rise slope (ERS) were quantitatively evaluated via profile curve analysis. Two observers qualitatively graded the graininess, lumen sharpness, and overall lumen visibility on the basis of the degree of confidence for the stenosis severity using a five-point scale. Results: The image noise with HIR, MBIR, DLR, and 2nd generation DLR was 23.0, 21.0, 16.9, and 9.5 HU, respectively. The corresponding CNR (25% stenosis) was 15.5, 15.9, 22.1, and 38.3, respectively. The corresponding ERS (25% stenosis) was 203.2, 198.6, 228.9, and 262.4 HU/mm, respectively. Among the four reconstruction methods, the 2nd generation DLR achieved the significantly highest CNR and ERS values. The score of 2nd generation DLR in all evaluation points (graininess, sharpness, and overall lumen visibility) was higher than those of the other methods (overall vessel visibility score, 2.6±0.5, 3.8±0.6, 3.7±0.5, and 4.6±0.5 with HIR, MBIR, DLR, and 2nd generation DLR, respectively). Conclusions: 2nd generation DLR provided better CNR and ERS in coronary CTA than HIR, MBIR, and previous-generation DLR, leading to the highest subjective image quality in the assessment of vessel stenosis.

4.
Eur Radiol Exp ; 8(1): 49, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622388

ABSTRACT

BACKGROUND: Automatic exposure control (AEC) plays a crucial role in mammography by determining the exposure conditions needed to achieve specific image quality based on the absorption characteristics of compressed breasts. This study aimed to characterize the behavior of AEC for digital mammography (DM), digital breast tomosynthesis (DBT), and low-energy (LE) and high-energy (HE) acquisitions used in contrast-enhanced mammography (CEM) for three mammography systems from two manufacturers. METHODS: Using phantoms simulating various breast thicknesses, 363 studies were acquired using all available AEC modes 165 DM, 132 DBT, and 66 LE-CEM and HE-CEM. AEC behaviors were compared across systems and modalities to assess the impact of different technical components and manufacturers' strategies on the resulting mean glandular doses (MGDs) and image quality metrics such as contrast-to-noise ratio (CNR). RESULTS: For all systems and modalities, AEC increased MGD for increasing phantom thicknesses and decreased CNR. The median MGD values (interquartile ranges) were 1.135 mGy (0.772-1.668) for DM, 1.257 mGy (0.971-1.863) for DBT, 1.280 mGy (0.937-1.878) for LE-CEM, and 0.630 mGy (0.397-0.713) for HE-CEM. Medians CNRs were 14.2 (7.8-20.2) for DM, 4.91 (2.58-7.20) for a single projection in DBT, 11.9 (8.0-18.2) for LE-CEM, and 5.2 (3.6-9.2) for HE-CEM. AECs showed high repeatability, with variations lower than 5% for all modes in DM, DBT, and CEM. CONCLUSIONS: The study revealed substantial differences in AEC behavior between systems, modalities, and AEC modes, influenced by technical components and manufacturers' strategies, with potential implications in radiation dose and image quality in clinical settings. RELEVANCE STATEMENT: The study emphasized the central role of automatic exposure control in DM, DBT, and CEM acquisitions and the great variability in dose and image quality among manufacturers and between modalities. Caution is needed when generalizing conclusions about differences across mammography modalities. KEY POINTS: • AEC plays a crucial role in DM, DBT, and CEM. • AEC determines the "optimal" exposure conditions needed to achieve specific image quality. • The study revealed substantial differences in AEC behavior, influenced by differences in technical components and strategies.


Subject(s)
Mammography , Radiographic Image Enhancement , Radiation Dosage , Radiographic Image Enhancement/methods , Mammography/methods , Phantoms, Imaging
5.
J Biophotonics ; : e202300536, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616109

ABSTRACT

Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non-contact imaging. Three analytical optical reflectance models for homogeneous, semi-infinite, tissue have been proposed (Modified Beer-Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin-based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi-infinite slab.

6.
J Appl Clin Med Phys ; : e14360, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648734

ABSTRACT

PURPOSE: Breast density is a significant risk factor for breast cancer and can impact the sensitivity of screening mammography. Area-based breast density measurements may not provide an accurate representation of the tissue distribution, therefore volumetric breast density (VBD) measurements are preferred. Dual-energy mammography enables volumetric measurements without additional assumptions about breast shape. In this work we evaluated the performance of a dual-energy decomposition technique for determining VBD by applying it to virtual anthropomorphic phantoms. METHODS: The dual-energy decomposition formalism was used to quantify VBD on simulated dual-energy images of anthropomorphic virtual phantoms with known tissue distributions. We simulated 150 phantoms with volumes ranging from 50 to 709 mL and VBD ranging from 15% to 60%. Using these results, we validated a correction for the presence of skin and assessed the method's intrinsic bias and variability. As a proof of concept, the method was applied to 14 sets of clinical dual-energy images, and the resulting breast densities were compared to magnetic resonance imaging (MRI) measurements. RESULTS: Virtual phantom VBD measurements exhibited a strong correlation (Pearson's r > 0.95 $r > 0.95$ ) with nominal values. The proposed skin correction eliminated the variability due to breast size and reduced the bias in VBD to a constant value of -2%. Disagreement between clinical VBD measurements using MRI and dual-energy mammography was under 10%, and the difference in the distributions was statistically non-significant. VBD measurements in both modalities had a moderate correlation (Spearman's ρ $\rho \ $ = 0.68). CONCLUSIONS: Our results in virtual phantoms indicate that the material decomposition method can produce accurate VBD measurements if the presence of a third material (skin) is considered. The results from our proof of concept showed agreement between MRI and dual-energy mammography VBD. Assessment of VBD using dual-energy images could provide complementary information in dual-energy mammography and tomosynthesis examinations.

7.
Sensors (Basel) ; 24(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38544238

ABSTRACT

The development of new medical-monitoring applications requires precise modeling of effects on the human body as well as the simulation and the emulation of realistic scenarios and conditions. The first aim of this paper is to develop realistic and adjustable 3D human-body emulation platforms that could be used for evaluating emerging microwave-based medical monitoring/sensing applications such as the detection of brain tumors, strokes, and breast cancers, as well as for capsule endoscopy studies. New phantom recipes are developed for microwave ranges for phantom molds with realistic shapes. The second aim is to validate the feasibility and reliability of using the phantoms for practical scenarios with electromagnetic simulations using tissue-layer models and biomedical antennas. The third aim is to investigate the impact of the water temperature in the phantom-cooking phase on the dielectric properties of the stabilized phantom. The evaluations show that the dielectric properties of the developed phantoms correspond closely to those of real human tissue. The error in dielectric properties varies between 0.5-8%. In the practical-scenario simulations, the differences obtained with phantoms-based simulations in S21 parameters are 0.1-13 dB. However, the differences are smaller in the frequency ranges used for medical applications.


Subject(s)
Breast Neoplasms , Microwaves , Humans , Female , Reproducibility of Results , Phantoms, Imaging , Computer Simulation
8.
Pediatr Radiol ; 54(4): 646-652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472490

ABSTRACT

Hand-wrist radiography is the most common and accurate method for evaluating children's bone age. To reduce the scattered radiation of radiosensitive organs in bone age assessment, we designed a small X-ray instrument with radioprotection function by adding metal enclosure for X-ray shielding. We used a phantom operator to compare the scattered radiation doses received by sensitive organs under three different protection scenarios (proposed instrument, radiation personal protective equipment, no protection). The proposed instrument showed greater reduction in the mean dose of a single exposure compared with radiation personal protective equipment especially on the left side which was proximal to the X-ray machine (≥80.0% in eye and thyroid, ≥99.9% in breast and gonad). The proposed instrument provides a new pathway towards more convenient and efficient radioprotection.


Subject(s)
Radiation Protection , Child , Humans , Radiation Dosage , X-Rays , Radiography , Radiation Protection/methods , Fluoroscopy , Phantoms, Imaging
9.
J Mech Behav Biomed Mater ; 154: 106522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537609

ABSTRACT

Physiologically modeled test samples with known properties and characteristics, or phantoms, are essential for developing sensitive, repeatable, and accurate quantitative MRI techniques. Magnetic resonance elastography (MRE) is one such technique used to estimate tissue mechanical properties, and it is advantageous to use phantoms with independently tunable mechanical properties to benchmark the accuracy of MRE methods. Phantoms with tunable shear stiffness are commonly used for MRE, but tuning the viscosity or damping ratio has proven to be difficult. A promising candidate for MRE phantoms with tunable damping ratio is polyacrylamide (PAA). While pure PAA has very low attenuation, viscoelastic hydrogels have been made by entrapping linear polyacrylamide strands (LPAA) within the PAA network. In this study, we evaluate the use of LPAA/PAA gels as physiologically accurate phantoms with tunable damping ratio, independent of shear stiffness, via MRE. Phantoms were made with 15.3 wt% PAA while the LPAA concentration ranged from 4.5 wt% to 8.0 wt%. MRE was performed at 9.4 T with 400 Hz vibration on all phantoms revealing a strong, positive correlation between damping ratio and LPAA content (p < 0.001). There was no significant correlation between shear stiffness and LPAA content, confirming a constant PAA concentration yielded constant shear stiffness. Rheometry at 10 Hz was performed to verify the damping ratio of the phantoms. Nearly identical slopes for damping ratio versus LPAA content were found from both MRE and rheometry (0.0073 and 0.0075 respectively). Ultimately, this study validates the adaptation of polyacrylamide gels into physiologically-relevant MRE phantoms to enable testing of MRE estimates of damping ratio.


Subject(s)
Acrylic Resins , Elasticity Imaging Techniques , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging , Phantoms, Imaging , Viscosity
10.
Eur J Radiol ; 173: 111394, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428256

ABSTRACT

INTRODUCTION: Strategies for achieving high resolution varies between manufacturers. In CT, the helical mode with narrow collimation has long been considered as the gold standard for high-resolution imaging. More recently, incremental modes with small dexels and focal spot, have been developed but have not been compared with helical acquisitions under optimal conditions. The aim of this work is to compare the high-resolution acquisition strategies currently proposed by recent MSCT. METHODS: Three CT systems were compared. A phantom was used to evaluate geometric accuracy, uniformity, scan slice geometry, and spatial resolution. Human dry bones were used to test different protocols on real bone architecture. A blind visual analysis was conducted by trained CT users for classifying the different acquisitions (p-values). RESULTS: All systems give satisfactory results in terms of geometric accuracy and uniformity. The in-plane MTF at 5% were respectively 13.4, 15.9 and 18.1 lp/cm. Dry-bones evaluation confirms that acquisition#3 is considered as the best. CONCLUSIONS: The incremental acquisition coupled with à small focal spot, and a high-sampling detector, overpasses the reference of low-pitch helical acquisitions for high-resolution imaging. Cortical bone, bony vessels, and tumoral matrix analysis are the very next challenges that will have to be managed to improve normal and pathologic bone imaging thanks to the availability UHR-CT systems.


Subject(s)
Bone and Bones , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Bone and Bones/diagnostic imaging
11.
J Ultrasound Med ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469913

ABSTRACT

OBJECTIVES: This study aimed to explore the interactions between microbubbles and microwave ablation (MWA). METHODS: The study employed custom-made phantoms (in vitro) and white New Zealand rabbits (in vivo). MWA was performed with or without microbubbles in the phantoms (2 × 105 particles mL-1 ) and rabbit livers (intravenous injection of 0.05 mL/kg SonoVue). During the MWA, K-type thermocouple probes were used to monitor the MWA-induced temperature increase. Contrast-enhanced ultrasound imaging (CEUS) was used to monitor and analyze the microbubbles signal intensity. After MWA, the ablation-zone volumes were evaluated and compared between the groups with and without microbubbles. RESULTS: In both the phantom models and rabbits, microbubbles showed no significant influence on MWA, including the ablation range and MWA-induced temperature increase. In phantoms and rabbit livers filled with microbubbles, MWA caused the formation of a gradually expanding microbubble-defect region over the ablation time. An increase in the temperature caused microbubble destruction. CONCLUSIONS: Microbubbles had no significant influence on MWA. However, MWA induced the destruction of microbubbles in a temperature-dependent manner. Thus, the poor thermotolerance of microbubbles is a non-negligible barrier when using CEUS to monitor the ablation range during MWA in real-time.

12.
Eur Radiol Exp ; 8(1): 19, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347188

ABSTRACT

BACKGROUND: A dual-function phantom designed to quantify the apparent diffusion coefficient (ADC) in different fat contents (FCs) and glass bead densities (GBDs) to simulate the human tissues has not been documented yet. We propose a dual-function phantom to quantify the FC and to measure the ADC at different FCs and different GBDs. METHODS: A fat-containing diffusion phantom comprised by 30 glass-bead-containing fat-water emulsions consisting of six different FCs (0, 10, 20, 30, 40, and 50%) multiplied by five different GBDs (0, 0.1, 0.25, 0.5, and 1.0 g/50 mL). The FC and ADC were measured by the "iterative decomposition of water and fat with echo asymmetry and least squares estimation-IQ," IDEAL-IQ, and single-shot echo-planar diffusion-weighted imaging, SS-EP-DWI, sequences, respectively. Linear regression analysis was used to evaluate the relationship among the fat fraction (FF) measured by IDEAL-IQ, GBD, and ADC. RESULTS: The ADC was significantly, negatively, and linearly associated with the FF (the linear slope ranged from -0.005 to -0.017, R2 = 0.925 to 0.986, all p < 0.001). The slope of the linear relationship between the ADC and the FF, however, varied among different GBDs (the higher the GBD, the lower the slope). ADCs among emulsions across different GBDs and FFs were overlapped. Emulsions with low GBDs plus high FFs shared a same lower ADC range with those with median or high GBDs plus median or lower FFs. CONCLUSIONS: A novel dual-function phantom simulating the human tissues allowed to quantify the influence of FC and GBD on ADC. RELEVANCE STATEMENT: The study developed an innovative dual-function MRI phantom to explore the impact of FC on ADC variation that can affect clinical results. The results revealed the superimposed effect on FF and GBD density on ADC measurements. KEY POINTS: • A dual-function phantom made of glass bead density (GBD) and fat fraction (FF) emulsion has been developed. • Apparent diffusion coefficient (ADC) values are determined by GBD and FF. • The dual-function phantom showed the mutual ADC addition between FF and GBD.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging , Water , Phantoms, Imaging
13.
J Appl Clin Med Phys ; 25(4): e14285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317593

ABSTRACT

PURPOSE: To investigate the impact of digital image post-processing algorithms on various image quality (IQ) metrics of radiographic images under different exposure conditions. METHODS: A custom-made phantom constructed according to the instructions given in the IAEA Human Health Series No.39 publication was used, along with the respective software that automatically calculates various IQ metrics. Images with various exposure parameters were acquired with a digital radiography unit, which for each acquisition produces two images: one for-processing (raw) and one for-presentation (clinical). Various examination protocols were used, which incorporate diverse post-processing algorithms. The IQ metrics' values (IQ-scores) obtained were analyzed to investigate the effects of increasing incident air kerma (IAK) on the image receptor, tube potential (kVp), additional filtration, and examination protocol on image quality, and the differences between image type (raw or clinical). RESULTS: The IQ-scores were consistent for repeated identical exposures for both raw and clinical images. The effect that changes in exposure parameters and examination protocol had on IQ-scores were different depending on the IQ metric and image type. The expected positive effect that increasing IAK and decreasing tube potential should have on IQ was clearly exhibited in two IQ metrics only, the signal difference-to-noise-ratio (SDNR) and the detectability index (d'), for both image types. No effect of additional filtration on any of the IQ metrics was detected on images of either type. An interesting finding of the study was that for all different image acquisition selections the d' scores were larger in raw images, whereas the other IQ metrics were larger in clinical images for most of the cases. CONCLUSIONS: Since IQ-scores of raw and their respective clinical images may be largely different, the same type of image should be consistently used for monitoring IQ constancy and when results from different X-ray systems are compared.


Subject(s)
Radiographic Image Enhancement , Software , Humans , Radiation Dosage , Radiography , X-Rays , Phantoms, Imaging
14.
Med Phys ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348927

ABSTRACT

BACKGROUND: Phantoms are commonly used to evaluate and compare the performance of imaging systems given the known ground truth. Positron emission tomography (PET) scanners are routinely validated using the NEMA image quality phantom, in which lesions are modeled using 10 to 37 mm fillable spheres. The NEMA phantom neglects, however, to model focal (3-10-mm), high-uptake lesions that are increasingly observed in prostate-specific membrane antigen (PSMA) PET images. PSMA-targeting radiopharmaceuticals allow for enhanced detection of metastatic prostate cancers. As such, there is significant need to develop an updated phantom which considers both the quantitative and lesion detectability of this new paradigm in oncological PET imaging. PURPOSE: In this work, we present the Quantitative PET Prostate Phantom (Q3P); a portable and modular phantom that can be used to improve and harmonize imaging protocols for 18 F-PSMA PET scans. METHODS: A one-piece cylindrical phantom was designed effectively in two halves, which we call modules. Module 1 was designed to mimic lesions in the presence of background, and Module 2 mimicked very high contrast conditions (i.e., very low background) that can be observed in 18 F-PSMA PET scans. Shell-less radioactive spheres (3-16-mm) were cast using epoxy resin mixed with sodium-22 (22 Na), a long half-life positron emitter with positron range similar to 18 F. To establish realistic lesion contrast, the 22 Na spheres were mounted in a cylindrical chamber that can be filled with an 18 F background (module 1). Thirteen exchangeable spherical cavity inserts (3-37-mm) were machined in two parts and solvent welded together, and filled with 18 F (50 kBq/mL) to model lesions with very high contrast (module 2). Five 2.5-min PET scans were acquired on a 5-ring GE Discovery MI PET/CT scanner (General Electric, USA). Lesions were segmented using 41% of SUVmax fixed thresholding (41% FT) and recovery coefficients (RCs) were computed from 5 noise realizations. RESULTS: The manufactured phantom is portable (5.7 kg) and scan preparation takes less than 40 min. The total 22 Na activity is 250 kBq, allowing it to be shipped as an exempt package under International Atomic Energy Agency (IAEA) regulations. Recovery coefficients, computed using PSF modeling and no post-reconstruction smoothing, were 130.3% (16 mm), 147.1% (10 mm), 87.2% (6 mm), and 7.0% (3 mm) for RCmax , which decreased to 91.1% (16 mm), 90.6% (10 mm), 53.2% (6 mm), and 3.6% (3 mm) for RCmean in the 22 Na spheres. Comparatively, 18 F sphere recovery was 110.7% (17 mm), 123.6% (10 mm), 106.5% (7 mm), and 23.3% (3 mm) for RCmax , which was reduced to 76.7% (17 mm), 77.7% (10 mm), 66.8% (7 mm), and 13.5% (3 mm), for RCmean . CONCLUSIONS: A standardized imaging phantom was developed for lesion quantification assessment in 18 F-PSMA PET images. The phantom is configurable, providing users with the opportunity to modify background activity levels or sphere sizes according to clinical demands. Distributed to the community, the Q3P phantom has the potential to enable better assessment of lesion quantification and harmonization of 18 F-PSMA PET imaging, which may lead to more robust predictive metrics and better outcome prediction in metastatic prostate cancer.

15.
Bioengineering (Basel) ; 11(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38391618

ABSTRACT

Blunt and blast impacts occur in civilian and military personnel, resulting in traumatic brain injuries necessitating a complete understanding of damage mechanisms and protective equipment design. However, the inability to monitor in vivo brain deformation and potential harmful cavitation events during collisions limits the investigation of injury mechanisms. To study the cavitation potential, we developed a full-scale human head phantom with features that allow a direct optical and acoustic observation at high frame rates during blunt impacts. The phantom consists of a transparent polyacrylamide material sealed with fluid in a 3D-printed skull where windows are integrated for data acquisition. The model has similar mechanical properties to brain tissue and includes simplified yet key anatomical features. Optical imaging indicated reproducible cavitation events above a threshold impact energy and localized cavitation to the fluid of the central sulcus, which appeared as high-intensity regions in acoustic images. An acoustic spectral analysis detected cavitation as harmonic and broadband signals that were mapped onto a reconstructed acoustic frame. Small bubbles trapped during phantom fabrication resulted in cavitation artifacts, which remain the largest challenge of the study. Ultimately, acoustic imaging demonstrated the potential to be a stand-alone tool, allowing observations at depth, where optical techniques are limited.

16.
Article in English | MEDLINE | ID: mdl-38386192

ABSTRACT

Virtual mono-energetic images (VMI) using dual-layer computed tomography (DLCT) enable substantial contrast medium (CM) reductions. However, the combined impact of patient size, tube voltage, and heart rate (HR) on VMI of coronary CT angiography (CCTA) remains unknown. This phantom study aimed to assess VMI levels achieving comparable contrast-to-noise ratio (CNR) in CCTA at 50% CM dose across varying tube voltages, patient sizes, and HR, compared to the reference protocol (100% CM dose, conventional at 120 kVp). A 5 mm artificial coronary artery with 100% (400 HU) and 50% (200 HU) iodine CM-dose was positioned centrally in an anthropomorphic thorax phantom. Horizontal coronary movement was matched to HR (at 0, < 60, 60-75, > 75 bpm), with varying patient sizes simulated using phantom extension rings. Raw data was acquired using a clinical CCTA protocol at 120 and 140 kVp (five repetitions). VMI images (40-70 keV, 5 keV steps) were then reconstructed; non-overlapping 95% CNR confidence intervals indicated significant differences from the reference. Higher CM-dose, reduced VMI, slower HR, higher tube voltage, and smaller patient sizes demonstrated a trend of higher CNR. Regardless of HR, patient size, and tube voltage, no significant CNR differences were found compared to the reference, with 100% CM dose at 60 keV, or 50% CM dose at 40 keV. DLCT reconstructions at 40 keV from 120 to 140 kVp acquisitions facilitate 50% CM dose reduction for various patient sizes and HR with equivalent CNR to conventional CCTA at 100% CM dose, although clinical validation is needed.

17.
Magn Reson Med ; 91(6): 2579-2596, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192108

ABSTRACT

PURPOSE: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS: A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS: Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION: The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.


Subject(s)
Diffusion Magnetic Resonance Imaging , Models, Theoretical , Diffusion Magnetic Resonance Imaging/methods , Axons , Microscopy , Neuroimaging
18.
J Radiol Prot ; 44(1)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38232407

ABSTRACT

The escalating incidence of differentiated thyroid cancer (DTC) in pediatric patients and the resultant growing use of radioactive iodine (RAI) reinforce the need to evaluate radiation exposure to normal tissues and radiation-induced health risks in pediatric patients undergoing RAI therapy. In the current study, we calculated absorbed dose coefficients (i.e. absorbed dose per unit activity administered, mGy MBq-1) specific for pediatric patients with localized DTC undergoing RAI therapy following total thyroidectomy for use in epidemiological studies. We first modified previously-published biokinetic models for adult thyroid cancer patients to achieve a reasonable agreement with iodine biokinetics observed in pediatric patients or design principles addressed in the International Commission on Radiological Protection (ICRP) reference age-specific biokinetic models. We then combined the biokinetic models in conjunction withSvalues derived from ICRP reference pediatric voxel phantoms. The absorbed dose coefficients for pediatric patients were overall greater than those for adults with a ratio (pediatric/adult) up to 11.6 and rapidly decreased with increasing age. The sensitivity analysis showed that the renal clearance rate andSvalues may have the greatest impact on the absorbed dose coefficients with the rank correlation coefficients ranging from -0.53 to -0.82 (negative correlations) and from 0.51 to 0.80 (positive correlations), respectively. The results of the current study may be utilized in clinical or epidemiological studies to estimate organ-specific radiation absorbed doses and radiation-associated health risks among pediatric thyroid cancer patients.


Subject(s)
Thyroid Neoplasms , Adult , Humans , Child , Iodine Radioisotopes/therapeutic use , Radiation Dosage , Thyroidectomy , Radiometry/methods
19.
Eur Radiol ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175219

ABSTRACT

OBJECTIVES: Cardiac motion artifacts hinder the assessment of coronary arteries in coronary computed tomography angiography (CCTA). We investigated the impact of motion compensation reconstruction (MCR) on motion artifacts in CCTA at various heart rates (HR) using a dynamic phantom. MATERIALS AND METHODS: An artificial hollow coronary artery (5-mm diameter lumen) filled with iodinated contrast agent (400 HU at 120 kVp), positioned centrally in an anthropomorphic chest phantom, was scanned using a dual-layer spectral detector CT. The artery was translated at constant horizontal velocities (0-80 mm/s, increment of 10 mm/s). For each velocity, five CCTA scans were repeated using a clinical protocol. Motion artifacts were quantified using the in-plane motion area. Regression analysis was performed to calculate the reduction in motion artifacts provided by MCR, by division of the slopes of non-MCR and MCR fitted lines. RESULTS: Reference mean (95% confidence interval) motion artifact area was 24.9 mm2 (23.8, 26.0). Without MCR, motion artifact areas for velocities exceeding 20 mm/s were significantly larger (up to 57.2 mm2 (40.1, 74.2)) than the reference. With MCR, no significant differences compared to the reference were shown for all velocities, except for 70 mm/s (29.0 mm2 (27.0, 31.0)). The slopes of the fitted data were 0.44 and 0.04 for standard and MCR reconstructions, respectively, resulting in an 11-time motion artifact reduction. CONCLUSION: MCR may improve CCTA assessment in patients by reducing coronary artery motion artifacts, especially in those with elevated HR who cannot receive beta blockers or do not attain the targeted HR. CLINICAL RELEVANCE STATEMENT: This vendor-specific motion compensation reconstruction may improve coronary computed tomography angiography assessment in patients by reduction of coronary artery motion artifacts, especially in those with elevated various heart rates (HR) who cannot receive beta blockers or do not attain the targeted HR. KEY POINTS: • Motion artifacts are known to hinder the assessment of coronary arteries on coronary CT angiography (CCTA), leading to more non-diagnostic scans. • This dynamic phantom study shows that motion compensation reconstruction (MCR) reduces motion artifacts at various velocities, which may help to decrease the number of non-diagnostic scans. • MCR in this study showed to reduce motion artifacts 11-fold.

20.
BMC Med Imaging ; 24(1): 12, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182987

ABSTRACT

BACKGROUND: Lung cancer remains a leading cause of death among cancer patients. Computed tomography (CT) plays a key role in lung cancer screening. Previous studies have not adequately quantified the effect of scanning protocols on the detected tumor size. The aim of this study was to assess the effect of various CT scanning parameters on tumor size and densitometry based on a phantom study and to investigate the optimal energy and mA image quality for screening assessment. METHODS: We proposed a new model using the LUNGMAN N1 phantom multipurpose anthropomorphic chest phantom (diameters: 8, 10, and 12 mm; CT values: - 100, - 630, and - 800 HU) to evaluate the influence of changes in tube voltage and tube current on the size and density of pulmonary nodules. In the LUNGMAN N1 model, three types of simulated lung nodules representing solid tumors of different sizes were used. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were used to evaluate the image quality of each scanning combination. The consistency between the calculated results based on segmentation from two physicists was evaluated using the interclass correlation coefficient (ICC). RESULTS: In terms of nodule size, the longest diameters of ground-glass nodules (GGNs) were closest to the ground truth on the images measured at 100 kVp tube voltage, and the longest diameters of solid nodules were closest to the ground truth on the images measured at 80 kVp tube voltage. In respect to density, the CT values of GGNs and solid nodules were closest to the ground truth when measured at 80 kVp and 100 kVp tube voltage, respectively. The overall agreement demonstrates that the measurements were consistent between the two physicists. CONCLUSIONS: Our proposed model demonstrated that a combination of 80 kVp and 140 mA scans was preferred for measuring the size of the solid nodules, and a combination of 100 kVp and 100 mA scans was preferred for measuring the size of the GGNs when performing lung cancer screening. The CT values at 80 kVp and 100 kVp were preferred for the measurement of GGNs and solid nodules, respectively, which were closest to the true CT values of the nodules. Therefore, the combination of scanning parameters should be selected for different types of nodules to obtain more accurate nodal data.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer , Multiple Pulmonary Nodules/diagnostic imaging , Phantoms, Imaging , Radionuclide Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...